Visualizzazione post con etichetta neuroscience. Mostra tutti i post
Visualizzazione post con etichetta neuroscience. Mostra tutti i post

Le traducteur en tant qu’entité cognitive

Selon les théories «classiques», le traducteur n’est qu’un passeur de sens, un intermédiaire, intervenant dans le cadre d’un acte de communication par écrit entre personnes allophones. Ces dernières années, grâce aux progrès de la psychologie cognitive et de la collaboration entre traductologues et cognitivistes, s’est formé progressivement en Traductologie un courant qui aborde le traducteur non seulement comme un passeur de sens, mais aussi comme une entité cognitive, c’est-à-dire un être humain qui met ses facultés cognitives au service de la communication multilingue.


Cette approche a enrichi la pensée traductologique en tentant de dévoiler des aspects jusqu’ici «cachés» ou «obscurs» du sujet traducteur lorsqu’il traduit, allant de ce qu’il extériorise lorsqu’on lui demande de verbaliser sa pensée à ce qui se passe dans son cerveau, dans son âme. Ainsi, les premières tentatives ont visé à comprendre ce qui se passe dans la tête du sujet traducteur en appliquant des méthodes de la psychologie cognitive, telles que la méthode du Think Aloud Protocol (TAP) et plus tard des méthodes plus «sophistiquées», comme celle appliquée lors d’une expérimentation réalisée par Alexandra Kosma à l’Université de Caen (1), qui a permis l’étude du fonctionnement spécifique de la mémoire de travail lors de l’opération traduisante en utilisant comme référence de base le modèle de la mémoire de travail proposé par Baddeley et comme outil principal un système d’eye-tracking (2).

Dans cette courte note, nous nous limiterons à une présentation très schématique du fonctionnement, selon approche cognitiviste, du système mnésique lors de l’acte de traduction. En effet, le système mnésique du traducteur joue un rôle primordial lors du traitement des informations contenues dans le texte à traduire. Lors de la lecture du texte à traduire le système oculaire du traducteur capte les informations exposées sur le papier ou sur l’écran, qui passent alors par le «registre sensoriel» dans son système mnésique, où elles font l’objet d’un traitement spécifique. Une fois dans le système mnésique, ces informations sont traitées dans la mémoire de travail, un sous-système mnésique qui joue un rôle fondamental, en vue de produire la traduction de ce passage. 

La pièce maîtresse de ce sous-système est, selon Baddeley, l’«administrateur central» qui est responsable de la gestion de toutes ces informations. Pour la réalisation de la traduction d’un passage, la mémoire de travail fait appel aux informations issues du texte à traduire et à celles déjà stockées dans la mémoire à long terme (3). Ces dernières peuvent être de nature linguistique mais aussi de nature procédurale, fruit de l’entraînement, de l’expérience, voire de l’expertise du traducteur. Si celles-ci sont insuffisantes pour la production de la traduction demandée, le traducteur fait appel à des informations extrinsèques, issues d’une recherche terminologique ou documentaire, voire de la consultation d’experts.

La réalisation de ce traitement suppose la mobilisation de plusieurs ressources cognitives du sujet traducteur, car il s’agit d’un processus qui requiert une multitude de prises de décisions, en fonction des éléments contenus explicitement ou implicitement dans le texte à traduire, de la situation de communication dans laquelle s’insère l’acte traductionnel, du bagage cognitif du traducteur, etc. Parfois ces décisions sont également influencées par la réaction émotive du traducteur provoquée par la lecture du texte à traduire (5). Ce genre de réactions ne se limitent pas aux textes littéraires, mais peuvent également se manifester lors de la traduction d’autres types de textes à forte connotation émotive.

Plusieurs travaux ont été consacrés aux différents types de lecteurs et de lectures lors de l’acte de traduction. Chaque traducteur, en fonction de son bagage cognitif, de son expérience spécifique et de son état physique et émotionnel adopte des stratégies de lecture différentes, qui dépendent des fonctions que cette lecture doit accomplir. Freddie Plassard, dans son ouvrage Lire pour traduire (6), met en exergue les différents types de lectures adoptées par le traducteur, selon qu’il lit pour comprendre ou pour analyser le texte à traduire, pour consulter des sources de documentation, pour vérifier sa traduction, etc.

Les recherches se poursuivent soit en approfondissant des domaines en cours d’étude, soit en explorant des domaines nouveaux faisant appel à des disciplines jusqu’ici peu exploitées par la Traductologie, comme les neurosciences. Dans le cas de ces dernières, nous en sommes au tout début, mais (et?) personne ne peut prédire l’avenir…

Written by Michel Politis, Associate Professor. He has been teaching since 1988 at the Department of Foreign Languages, Translation and Interpreting of the Ionian University. His expertise lies in the areas of political and legal and economic translation, as well as cognition and translation. From 2000 to 2003 and from 2006 till nowadays he is the director of the Laboratory for Legal, Economic, Political and Technical Translation of the Ionian University. From 2003 to 2010 he was the director of the joint master in Sciences de la Traduction – Traductologie et Sciences cognitive (collaboration between the Ionian University and the University of Caen Basse-Normandie, France). For his contribution to the advancement of the academic cooperation between Greece and France he was awarded in 2003 the Academic Palms (Knight) by the President of France and in 2014 the Academic Palms (Officer). He has published widely on specialized translation and he has also guest-edited an issue of META on cognition and translation.
Post edited by  Katerina PalamiotiTranslator, Social Media and Content Manager, Communication Trainee and Foodie at the Terminology Coordination Unit of the European Parliament.
Sources:
  • (1) Dans le cadre du master conjoint « Sciences de la Traduction – Traductologie et Sciences cognitives» (collaboration de l’Université de Caen et de l’Université ionienne).
  • (2) Kosma Alexandra (2007) « Le fonctionnement spécifique de la mémoire de travail en traduction » META, vol. 52-1, Montréal, Presses de l’Université de Montréal
  • (3) Petit Laurent (2006) La mémoire, Collection « Que sais-je ? », n° 350, Paris, Presses Universitaires de France
  • (4) Politis Michel (2007) «L’apport de la psychologie cognitive à la didactique de la traduction», META, vol. 52-1, Montréal, Presses de l’Université de Montréal
  • (5) Durieux Christine (2007) « L’opération traduisante entre raison et émotion », META, vol. 52-1, Montréal, Presses de l’Université de Montréal
  • (6) Plassard Freddie (2007) Lire pour traduire, Paris, Les Presses de la Sorbonne Nouvelle

Why some people find learning a language harder than others

Speed and extent of learning determined by innate differences in how the various parts of the brain "talk" to one another.

People who struggle to learn foreign languages may simply have brains that are not wired to retain linguistic skills, a new study suggests.
Learning a second language is far easier for some adults than others because of innate differences in how the various parts of the brain "talk" to one another.
The difference is so striking that researchers can even predict who will succeed in language skills, and who will fail, simply based on brain scans.
It is all to do with how well language centres of the brain communicate when resting. Most learning occurs when the brain is at rest, which is why sleep is so important.
Scientists at McGill University in Canada found that if left anterior operculum and the left superior temporal gyrus communicate more with each other at rest, then language learning is easier.
Why some people find learning a language harder than others
How the brain is wired determines whether someone can learn a second language easily  Photo: ALAMY
"These findings have implications for predicting language learning success and failure," said study author Dr Xiaoqian Chai.
For the study, researchers scanned the brains of 15 adult English speakers who were about to begin an intensive 12-week French course, and then tested their language abilities both before and after the course.
Participants with stronger connections between the left left anterior operculum and an important region of the brain's language network called the left superior temporal gyrus showed greater improvement in the speaking test.
However, that doesn't mean success at a second language is entirely predetermined by the brain's wiring.
“The brain is very plastic, meaning that it can be shaped by learning and experience,” added Dr Chai.
The study is a first step to understanding individual differences in second language learning. In the long term it might help us to develop better methods for helping people to learn better."
Dr Arturo Hernandez, a neuroscientist at the University of Houston who studies second-language learning and was not involved in the study, said: “The most interesting part of this finding is that the connectivity between the different areas was observed before learning.
"This shows that some individuals may have a particular neuronal activity pattern that may lend itself to better learning of a second language."
The research was published in the Journal of Neuroscience.
___________________
http://www.telegraph.co.uk/news/science/science-news/12108758/Why-some-people-find-learning-a-language-harder-than-others.html

What happens in the brain when you learn a language?

Scans and neuroscience are helping scientists understand what happens to the brain when you learn a second language.

Learning a foreign language can increase the size of your brain. This is what Swedish scientists discovered when they used brain scans to monitor what happens when someone learns a second language. The study is part of a growing body of research using brain imaging technologies to better understand the cognitive benefits of language learning. Tools like magnetic resonance imaging (MRI) and electrophysiology, among others, can now tell us not only whether we need knee surgery or have irregularities with our heartbeat, but reveal what is happening in our brains when we hear, understand and produce second languages.
The Swedish MRI study showed that learning a foreign language has a visible effect on the brain. Young adult military recruits with a flair for languages learned Arabic, Russian or Dari intensively, while a control group of medical and cognitive science students also studied hard, but not at languages. MRI scans showed specific parts of the brains of the language students developed in size whereas the brain structures of the control group remained unchanged. Equally interesting was that learners whose brains grew in the hippocampus and areas of the cerebral cortex related to language learning had better language skills than other learners for whom the motor region of the cerebral cortex developed more.
In other words, the areas of the brain that grew were linked to how easy the learners found languages, and brain development varied according to performance. As the researchers noted, while it is not completely clear what changes after three months of intensive language study mean for the long term, brain growth sounds promising.
Looking at functional MRI brain scans can also tell us what parts of the brain are active during a specific learning task. For example, we can see why adult native speakers of a language like Japanese cannot easily hear the difference between the English “r” and “l” sounds (making it difficult for them to distinguish “river” and “liver” for example). Unlike English, Japanese does not distinguish between “r” and “l” as distinct sounds. Instead, a single sound unit (known as a phoneme) represents both sounds.
When presented with English words containing either of these sounds, brain imaging studies show that only a single region of a Japanese speaker’s brain is activated, whereas in English speakers, two different areas of activation show up, one for each unique sound.
For Japanese speakers, learning to hear and produce the differences between the two phonemes in English requires a rewiring of certain elements of the brain’s circuitry. What can be done? How can we learn these distinctions?
Early language studies based on brain research have shown that Japanese speakers can learn to hear and produce the difference in “r” and “l” by using a software program that greatly exaggerates the aspects of each sound that make it different from the other. When the sounds were modified and extended by the software, participants were more easily able to hear the difference between the sounds. In one study, after only three 20-minute sessions (just a single hour’s worth), the volunteers learned to successfully distinguish the sounds, even when the sounds were presented as part of normal speech.
This sort of research might eventually lead to advances in the use of technology for second-language learning. For example, using ultrasound machines like the ones used to show expectant parents the features and movements of their babies in the womb, researchers in articulatory phonetics have been able to explain to language learners how to make sounds by showing them visual images of how their tongue, lips, and jaw should move with their airstream mechanisms and the rise and fall of the soft palate to make these sounds.
Ian Wilson, a researcher working in Japan, has produced some early reports of studies of these technologies that are encouraging. Of course, researchers aren’t suggesting that ultrasound equipment be included as part of regular language learning classrooms, but savvy software engineers are beginning to come up with ways to capitalise on this new knowledge by incorporating imaging into cutting edge language learning apps.
Kara Morgan-Short, a professor at the University of Illinois at Chicago, uses electrophysiology to examine the inner workings of the brain. She and her colleagues taught second-language learners to speak an artificial language – a miniature language constructed by linguists to test claims about language learnability in a controlled way.
In their experiment, one group of volunteers learned through explanations of the rules of the language, while a second group learned by being immersed in the language, similar to how we all learn our native languages. While all of their participants learned, it was the immersed learners whose brain processes were most like those of native speakers. Interestingly, up to six months later, when they could not have received any more exposure to the language at home because the language was artificial, these learners still performed well on tests, and their brain processes had become even more native-like.
In a follow-up study, Morgan-Short and her colleagues showed that the learners who demonstrated particular talents at picking up sequences and patterns learned grammar particularly well through immersion. Morgan-Short said: “This brain-based research tells us not only that some adults can learn through immersion, like children, but might enable us to match individual adult learners with the optimal learning contexts for them.”
Brain imaging research may eventually help us tailor language learning methods to our cognitive abilities, telling us whether we learn best from formal instruction that highlights rules, immersing ourselves in the sounds of a language, or perhaps one followed by the other.
However we learn, this recent brain-based research provides good news. We know that people who speak more than one language fluently have better memories and are more cognitively creative and mentally flexible than monolinguals. Canadian studies suggest that Alzheimer’s disease and the onset of dementia are diagnosed later for bilinguals than for monolinguals, meaning that knowing a second language can help us to stay cognitively healthy well into our later years.
Even more encouraging is that bilingual benefits still hold for those of us who do not learn our second languages as children. Edinburgh University researchers point out that “millions of people across the world acquire their second language later in life: in school, university, or work, or through migration or marriage.” Their results, with 853 participants, clearly show that knowing another language is advantageous, regardless of when you learn it.
___________________________________________
http://www.theguardian.com/education/2014/sep/04/what-happens-to-the-brain-language-learning?CMP=fb_gu